skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Jie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite considerable progress in tropical cyclone (TC) research, our current understanding and prediction capabilities regarding the TC intensity–size relation remain limited. This study systematically analyzes the key characteristics and performance of different types of mathematical models for TC intensity–size relations using the 6-hourly Tropical Cyclone Extended Best Track Dataset spanning 1988 to 2020. The models investigated include statistical, idealized (e.g., Rankine vortex), parametric, and theoretical models. In addition to directly comparing the solutions obtained from individual models to the observed TC records, we assess the models that can produce a unique finite-sized radial profile of surface winds for each TC record—a minimal requirement to ensure that the predicted radial profile of the surface winds would align with the observed profile. The results reveal that a sufficient condition to guarantee a unique radial profile of surface winds is that the associated model can be written as a radial invariant quantity, although it does not guarantee a finite-sized profile. Only the effective absolute angular momentum (eAAM) model, among all the models examined in this study, meets the minimum requirement. Furthermore, the solutions obtained from the eAAM model are well correlated with their observational counterparts (85 to 95%) with little systematic bias and small absolute mean errors that are very close to the observational resolution. The eAAM model’s ability to capture the complex intensity–size relation of observed TCs, in combination with these desirable features, suggests its high potential for gaining a better understanding of the underlying physics governing the observed TC intensity–size relation. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract We develop a decentralized colouring approach to diversify the nodes in a complex network. The key is the introduction of a local conflict index (LCI) that measures the colour conflicts arising at each node which can be efficiently computed using only local information. We demonstrate via both synthetic and real-world networks that the proposed approach significantly outperforms random colouring as measured by the size of the largest colour-induced connected component. Interestingly, for scale-free networks further improvement of diversity can be achieved by tuning a degree-biasing weighting parameter in the LCI. 
    more » « less